IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering ISO 3297:2007 Certified Vol. 6, Issue 11, November 2017

Design of High-Speed and Low Power Carry Skip Adder

Pritee verma¹, Shiva Jaishwal², Sonam Rathora³

Assistant Professor, Electronic Communication, SRMS CET&R, Bareilly, U.P., India¹⁻³

Abstract: In this paper we present high speed 8-bit Carry Skip Adder (CSA) compared with Ripple Carry Adder (RAC) and conventional Carry Skip Adder (CSA). This is more efficient in terms of power consumption, area usage and speed. Instead to make multiplexer logic, the propose architecture made of AND-OR-Inverter (AIO) combination gate for carry skip adder. The propose architecture are evaluated by comparing their speed, power and area with those of other address using 180nm, 90nm and 45nm static CMOS technology.

Keywords: Ripple Carry Adder (RCA), Carry Skip Adder(CSKA), CI-CSKA, high performance, incrimination.

I. INTRODUCTION

The main component of arithmetic logic unit (ALU) is adder which has capability to reduce the power consumption and increase their speed .These factor also effect the speed and power consumption of microprocessor. The power and performance along with dynamic voltage and frequency which depend on the supply voltage have become the motivation for the designing of circuit. This circuit consist of a system which may change the voltage and frequency of the circuit to reduce the power consumption. The power consumption of digital circuit is reduce by many method but most effective technique is to reduce the supply voltage due to the quadratic dependence of the switching energy on the voltage .The main leakage component in OFF device in the threshold current which has exponential dependency on the supply voltage level through the drain-induced barrier lowering effect. The ON device operation may present in the super-threshold, near-threshold, or sub-threshold region. When the working in the supper-threshold region lower delay and higher switching and leakage power are produced compared with near/sub-threshold regions, if the circuit operates in the sub-threshold region ,cause a large delay for the circuit with a small change in the sub-threshold current. Along with the knob of the supply voltage different adder structures/families can be chosen for speed and power optimization. Example including ripple carry adder (RCA), carry increment adder (CIA), carry skip adder (CSKA), carry select adder (CSA).

II. PRIOR WORK

In this paper the main focus on to reduce the carry propagation delay in RCA. The RAC is to consider to be a simplest adder with smallest area and power consumption but with the worst critical path delay .The speed, power consumption and area usages are considered to be larger than those of RCA for CSKA.

Fig. 1 8-bit ripple carry adder (RAC)

The conventional structure of ripple carry adder is made of simple full adder in which carry out off each full adder is the carry in of the succeeding next most significant full adder. The N cascaded FAs of an RAC, the worse propagation delay calculated by the summation of two N-bit numbers, A and B belong to logic there by the FAs are in the propagation mode. It mean that the worse case delay belong to the propagation mode

$$Pi=Ai X-OR Bi=1$$
 for $i = \dots N$

Where Pi is the propagation signal related to Ai and Bi. This shows that the delay of the RAC is linearly related to N. In that case, a group of cascaded FAs is in the propagation mode, the carry output of the chain is equal to the carry input. The diagram of 8-bit ripple carry adder is shown in figure 1.Critical path delay is generated by 8-bit ripple carry

International Journal of Advanced Research in Computer and Communication Engineering ISO 3297:2007 Certified

Vol. 6, Issue 11, November 2017

is 34.00ns this delay is calculated between input A0 and output C8 as shown in figure 2. This graph is drawn between voltage vs time, time scale is consider as 200ns.

Analog simulation of example					×
1 20					Display
· · · · · · · · · · · · · · · · · · ·					Gam
. <u>^1</u>					A0 💌
_ AR					and
A3					200 [origin [m]
B9. 2.0					120 Evaluate
B1					IV Frequency
120					0.00
1 20					0.00 Time scale
· ····································				<u> </u>	0.00 [200 ns 💌
					0.00 (30.0
					1.22
					Ext solve
					Reset Stop
·					Close
					1-0 130mW
or_C6 1 50					1.210
96-07 2.8				1,887	1 (20)
or_C0 75	-0.148(dV=1.486V)		33 330%6	64.010/16	1.20
mr. 00 + +-			0000	0020	
120 107 91					0.00
	/		/		0.00
7.20					0.00
					0.00
			fil		0.0

- 88 - 91 T 20					0.00
·					0.000
					- 0.00
Votage vs. time /votages and currents /votage vs. votage /Frequency vs. time / tive diagram /	19954.7 19974.7	19994.7 20014.7	200347	20054.7 20074.7	1 III VAID
1-23363.20 mi F=0.0160Ha	KM05 0.12µm - 6 Metal (1.20V, 5.30V)				

Fig. 2 Carry propagation delay of 8-bit ripple carry adder (RAC)

The CSKA, which is efficient adder in terms of power consumption and area usage and the critical path delay of the CSKA adder, is much smaller than the one in RCA, where the area and power consumption is similar to those of the RAC. The structure of 8-bit conventional CSKA, which is based on the Ripple carry adder logic as shown in figure 3 .A chain of full adder along with 2:1 multiplexers (Carry skip logic) is present in form of stage in the conventional structure of CSKA. 2:1 multiplexer can be used to connect RAC block and can be placed into one more level structure.

Fig. 3 8-bit carry skip adder (CSKA)

The CSKA configuration (i.e., the number of full adder per stage) has a great impact on the speed of this type of adder. We can compare between figure 2 and figure 4 the carry propagation delay of carry skip adder is less as compare ripple carry adder .carry propagation delay of carry skip adder is 8.00ns as shown in figure 4.

-		sime	1.800		samy.																																																					
	1.2	20																																																							delay	
	17	29 m	ne			in n	mh	a ma	n m	n n	mm		en r	1.00	1.71	m r	i mi	mł	n n	m	n m	n n	an	-	n m	n r	in r	1 m	n n	10	1 11 1	n m	n n	-		in n	e an e	101	n n	n n	h	n mi	n n	n n	n n	art	mm	mm	n n		i n n	m	n n r	in n	IT IT IS	18 E.	Gain	
	43	1. L	ГШ.	шш	ш.	u u	υш	u u	ШU	- M.O.		1.11	u u	U I	Uι	TU.	111	ΠL	м.	цu	ΠT.	UU I	л.,	ц	UL.	61. Q	цU	ШL	TTT.	иu	uц	U.L	AT L	ωu	110	u u	u u	ШL	ШI	ли	щμ	u u	. U 1	лın	лил.	JΠT	111	лn	110	uш	u u	шu	uu.	u u i	սսսյ			
		-																						_						_											_															an	d	_
A3						- L_	_			ú.					1		1				<u> </u>	1_	_						1								L	L			1	. I.			/								L			l ot	_C8	
80																																																									min/m	нак
							-																							-											-														0		Frequ	ency
82	11	20	*****					*****	*****	*****	*****	*****	******			*****					*****	*****	******			*****	*****	****	*****		*****	*****	*****	******			*****		*****	******		******		*****			******	******		******			******	******	0	00	III FF	er I
	17	io T	7	11	T	3	rt.	77	π	77	1/1	1.1		UT	TT	7	Π	π	Л	1	17	11			π	T	7	TT	7		m	π	77	71	71		ſΓ	TΤ	11	17		Π	m		177	- T	1	m	77		17	1	1.1		1.1.0	00 TH	me sca	ste
0.0	95	0		beel	sheed				durbe	etle	edH	ed)	eed					d-p				- deed	leed	~~~~~											el		keen									eeliit	ee			holin	Jeeler	heeles			ed. der	02 21	00 ma	•
	12	20~~																																																					C	66 [⁸]	0.300	-
_and_w	99-2 1	io																																																						00		
or_01	12	20~~																																																						oc	EDE MO	10
_0r_C2	ijġ.	io																																																					6	DC Ke	474 01	gone
	12	20	-			_		-									-		_			-		-					_		-		-		-																						CI	050
		0	_	۱		L		11.		7 17				1	1		11					1		-					<u> </u>	_	1.1.		77		1.1			L		. L	_	11		_		44				_			<u> </u>					_
01_05	2.2	in																_						_																																		
or_C6																																																							e e e e e e e e e e e e e e e e e e e	°°		
or_C7							-																							-											1														-	00		
PF C.0	Ľ		50	00ms		000	12	0.00		T	21/1	-54	00na	- 75				les 1	16.0	20ms	-75	0004		10000		16.0	10ms	- 75	000+		6.000	113	6.00	in a	1	20m3	160	0045	- 78	0004		1000	2ma	6.00	0ma	100	lons	100	10ms	26.0	00419	×.,	00ma	6.00	Oma	26		
101 10	12		0.1	120		0.130	Constant of	0.124		Ø. Y.	20	0.1	30	0	120		0.12	0	0.1	30	C	120	*****	0.120		0.1	30		0.120		0.124		0.13	0	0.1	20	0.	120		9.1301		0.12	0	0.1	20	0.1	30	0.1	20	0.1	20	0.	150	0.1	!O			
	Л	'n	\overline{nr}	m	ΠĨ	I' A T	nto	$\overline{1}$	nл	ΠM	而而	而們	ΠΠ.	m	πл	ЛГ	π	nn	nп	m	m	πл	ΠЛ	11	1N	nn	m	m	77	n.	1 M I	īΠ	nπ	ΠΠ	n di	ЛЛ	m	īπ	πл	ΠN	i nhi	ΠΠ	nπ	лл	πп	πħ	nn	ΠΠ	ΠĨ	m	TTTT	m	1π	เกท	7.7.8	90		
	83	H. L		υu	μ.,	υu	uр	uu		i wa	n n N n	1/11/1	u u	uч	υı				/ LL I	u u		1.011				<i>.</i>	սս	u (uμ		U.L		r unu			υu	υu	2 10 1	1 11 1	uμ	шu	i u i	1.11.1			5 10 1	J. LJ. I	u u	u u	<u>u u</u>			u u i	u u u			
800 132	12	20					7	1	7		7777						(****							~~~~	7							7																			****				0	66		
_xor_83	Ξà	0	-	r de la				in the		170	(~		m	-	-			~						~~7			m		-		7			T.		l		7 77									and and		T			28		
xor_64	÷;	iq	nr					4	n m	-	The mail	100.00	/17 F		<u> </u>			n n	10			1		-	T A	n n			-			ת ח	24	m m 1		mr			mn	7.0	-	11	n n	n n	n n	-{ }	20	0.0	mm			-	107					
xor_St	43	ųι	nu.	υu		UU.	ΠU	υu		L U U	1080	ΠĽ.	u u	սս	U	ענ	UΥ	101	710	чu	uι	ΠUΊ	ມມ	ענ		ΠU	JUL	ШΙ	n)	υU	υu	υL	ΠUL	шu	Шþ	0.0	υU	υL	лл	лл	U U	UΥ	ΠUΛ	JUI	m	m_1	7.77	JUL	nu	шU.	uυ	υIJ	vu	υu	an u			
xor_06	13	20					_											_												_											_																	
xor_57	0.0	,																						_																																		
	00						20	0					0.0					60	0.0					80.1						100	0.0										14	2.0				- 11	0.00				1	180.0			Time?	100		

Fig. 4 Carry propagation delay of 8-bit carry skip adder (CSKA)

III.PROPOSED CSKA STRUCTURE

As per the discussion made, the propagation delay of the CSKA can be lowered by reducing the delay of the skip logic for the reducing of delay, a modified CSKA structure has been presented in this paper.

The propose structure comprises of concatenation and the incrimination scheme with the conv-CSKA structure, which can be denoted by CI-CSKA. The ability to use simple carry skip logic can be represented from the propose structure. As 2:1 multiplexer have more delay, area and low power consumption they can be replaced with AOI/OAI compound gate(figure 5). As the carry propagate through the skip logic, it can be complemented.

International Journal of Advanced Research in Computer and Communication Engineering ISO 3297:2007 Certified

Vol. 6, Issue 11, November 2017

The complemented carry can be generated at even stage skip logic's output. compressed with the conventional one ,the propose structure has lower propagation delay with a small area .Note that while that power consumption of the AOI or OAI gate are smaller than that of multiplexer. The internal structure of CI-CSKA is shown in figure 5.

- I	1.20						l♥ delay
	1.20				1		0.02 Detween
	1 20						All and and
	i δo JaalJaalIaalLaal 		and band	and the test had been	and that that had had	freet had had had freet had had had had	Evaluate
	1 20						0.01 V Prequence
	1.20			********************************	***************************************		0.01 or_Cii 💌
83	налалала	/	INTERNET AND A A A A A A A A A A A A A A A A A A	IABBABBBBB	UNANAAABBAI	UNIVAVAVAVAVAVAVATATI VA UNIVAVAVAVAVAVAVA	I A MAYAYAYAYAYAYAYAYAYAYAYAYAYAYAYAYAYAY
C0	1.20 00.00.00.00.00.00.00.00.00						200 ns 💌
and Ca	1.20						0.01 (10.0
and_nu	1.20						0.00
04.01	1.20						0.00 Densel Oter
01_02	i io						Print Print
. or ca	10						Close
01.04							
or C5	20						
or_ce	i 90						0.00
	120						0.00
or CB	-0.120(dV=1.452V)	0 200 0 200 0 200	3 990 4 4 000 4 0 10 4 0 10 4 3 990 4 4 000	4 00016 4 00016	3.99046 4.00046 4.000/ 0.250444448 0.25044444 0.250	4 000/16 4 010/16 4 000/16 3 990/16 4 000	4 000/14 4 010/14 4 000/14 4 000/14 4 000/14 4 02.20
		-+					4.0
_xor_91	1.20						
xor_92	سوبا يبتر اليسوبا وتتر اليقارة	بالبيبر ليسجل بيبر ليسجل بيبر الي	بير الهمجة بيني الجميرة بينو الهمجة يتبر الجمع أجمع الجمع	يسبرا ينبع ليسيك ينبع ليسبوكن	بسر اجتبره بسر اجتبرا بسر ال	برانهموا ببنيا ليموك بنتر الهموك بنتر الجمعوا بتنز الجمعوا ب	بوغار كيسيان بدر كيسيان بدر كيسي ليسي فيسيان بدر
100.03		a hai a h		hall had been been been been been been been bee			
_X01_94							0.06
- 406-03K	1.20-3			k		h	
- 101-031	مرا بدر ^ا یسرا بدر ار <mark>م</mark> ق		ورايسوا ومرايسيا ومرايسيا يسرا ومراجعيا				
KOF_97	o	ليلا المل الما الما الملا الما اليوا	and the second s		100.0	and a bard a	160.0 Tome 9.0
Vollage	vs. time (Voltages and curren	nts (Voltage vs. voltage (Frequency v	vo.time (Eye diagram /				

Fig. 6 Delay of CI-CSKA structure

By the use of the static AOI and OAI gates (six transistors) measure with the static 2:1 multiplexer (12) transistor, causes to reduce in the area and delay of the skip logic. As shown in figure 6 the delay generated by CI-CSKA is 4ns as shown in figure 6, it is just half of delay generated by CSKA. In addition, except for the first block of RCA, the carry input to all other block is zero, and for the other blocks, we can also the change the first adder cell in the RCA chain is a HA. So that FAs in the conventional structure are change with the same number of HAs in the propose structure decreasing the area uses and delay of the skip logic. These incrimination blocks may be implemented with the same logic gate as those use for generating the select line of the multiplexer in the conventional structure. Therefore, the area usage of the proposed structure of CI-CSKA decreased compared with that of conventional one. The critical path of the proposed CI-CSKA structure shown in figure 6.

IV. RESULTS

In this section , we assess the efficacies of the proposed structures by comparing their delays, power, and area with those of some other adder .All the adder are considered here had the size of 8-bit and were designed, simulated and synthesize using a 180nm, 90nm and 45nm technology. The simulations and synthesis were performed using microwind tool environment. Table 1 reports the Technology, Power and Delay usages of 8-bit of RCA, CSKA, CI-CSKA adder structures.

S.NO.	Design	Technology	Delay	Power
		(nm)	(ns)	(µw)
		180	64 ns	120 μw
1	RCA	90	60ns	150 μw
		45	60ns	167 μw
		180	08ns	58 μw
2	CSKA	90	05.98ns	57 μw
		45	05.0ns	37 µw
		180	04.0ns	26 µw
3	CI-CSKA	90	2.48ns	25.56 μw
		45	1.89nsI	23. µw

TABLE I COMPARISON OF DIFFERENT TECHNOLOGIES, DELAY AND POWER OF RCA, CSKA AND PROPOSED CI-CSKA

IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering ISO 3297:2007 Certified

Vol. 6, Issue 11, November 2017

V. CONCLUSION

A static CSKA structure called CI-CSKA was proposed in this paper, which present the high speed and lower power utilization estimated with those of conventional one. By modified the structure with concatenation and incrimination techniques, the speed enhancement was achieved. In addition, AOI and OAI compound gate were utilized for the carry skip logics. Again, the recommended structure presented the lowest delay and PDP making itself as a better candidate for high-speed low-power application.

REFERENCES

- 1. Oklobdzija VG, zeydel BR, Dao HQ, Mathew S, comparison of perfprmance vlsi adder in the energy-delay space. IEEE Trans.verylarge scale integration .(VLSI)syst.jun2005;13:754-758p.
- 2. P. Ndai, S. Lu, D. Somesekhar, and K. Roy, "Fine-Grained Redundancy in Adders," Int. Symp. on QualityElectronic Design, pp. 317-321, March 2007.
- T. Lynch and E. E. Swartzlander, "A Spanning Tree Carry Lookahead Adder," IEEE Trans. on Computers, vol. 41, no. 8, pp. 931-939, Aug. 1992.
- D. Gizopoulos, M. Psarakis, A. Paschalis, and Y. Zorian, "Easily Testable Cellular Carry Lookahead Adders," Journal of Electronic Testing: Theory and Applications 19, 285-298, 2003.
- 5. S. Xing and W. W. H. Yu, "FPGA Adders: Performance Evaluation and Optimal Design," IEEE Design & Test of Computers, vol. 15, no. 1, pp. 24-29, Jan. 1998.
- 6. M. Bečvář and P. Štukjunger, "Fixed-Point Arithmetic in FPGA," Acta Polytechnica, vol. 45, no. 2, pp. 67-72, 2005.
- 7. N. H. E. Weste and D. Harris, "CMOS VLSI Design", 4th edition, Pearson–Addison-Wesley, 2011.
- 8. R. P. Brent and H. T. Kung, "A regular layout for parallel adders," IEEE Trans. Comput., vol. C-31, pp. 260-264, 1982.
- D. Harris, "A Taxonomy of Parallel Prefix Networks," in Proc. 37th Asilomar Conf. Signals Systems and Computers, pp. 2213–7, 2003.
- 10. P. M. Kogge and H. S. Stone, "A Parallel Algorithm for the Efficient Solution of a General Class of Recurrence Equations," IEEE Trans. on Computers, Vol. C-22, No 8, August 1973
- 11. Sauvagya Ranjan Sahoo, Kamala Kanta Mahapatra, "Design of Low Power and High Speed Ripple Carry Adder Using Modified Feed through Logic" in 2012 International Conference on Communications, Devices and Intelligent Systems (CODIS), 978-1-4673-4700.
- 12. R.W.Doran, "Variants of an improved carry-Iook ahead adder" IEEE Trans. Computers, vol. 37, Sep.1988.
- 13. A Koren, "Computer Arithmetic Algorithms", 2nd ed. Natick, MA, USA: A K Peters, Ltd., 2002.
- 14. R. Zlatanovici, S. Kao, and B. Nikolic, "Energy-delay optimization of 64-bit carry-look ahead adders with a 240 ps 90 nm CMOS design example," IEEE J. Solid-State Circuits, vol. 44, no. 2, pp. 569–583, Feb. 2009.
- 15. S. K. Mathew, M. A. Anders, B. Bloechel, T. Nguyen, R. K. Krishnamurthy, and S. Borkar, "A 4-GHz 300-mW 64-bit integer execution ALU with dual supply voltages in 90-nm CMOS," IEEE J. Solid-State Circuits, vol. 40, no. 1, pp. 44–51, Jan. 2005.